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ABSTRACT: Organic products tend to retail at a higher price than their conventional counterparts, which makes them
susceptible to fraud. In this study we evaluate the application of near-infrared spectroscopy (NIRS) as a rapid, cost-effective
method to verify the organic identity of feed for laying hens. For this purpose a total of 36 organic and 60 conventional feed
samples from The Netherlands were measured by NIRS. A binary classification model (organic vs conventional feed) was
developed using partial least squares discriminant analysis. Models were developed using five different data preprocessing
techniques, which were externally validated by a stratified random resampling strategy using 1000 realizations. Spectral regions
related to the protein and fat content were among the most important ones for the classification model. The models based on
data preprocessed using direct orthogonal signal correction (DOSC), standard normal variate (SNV), and first and second
derivatives provided the most successful results in terms of median sensitivity (0.91 in external validation) and median specificity
(1.00 for external validation of SNV models and 0.94 for DOSC and first and second derivative models). A previously developed
model, which was based on fatty acid fingerprinting of the same set of feed samples, provided a higher sensitivity (1.00). This
shows that the NIRS-based approach provides a rapid and low-cost screening tool, whereas the fatty acid fingerprinting model
can be used for further confirmation of the organic identity of feed samples for laying hens. These methods provide additional
assurance to the administrative controls currently conducted in the organic feed sector.
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■ INTRODUCTION

The organic food market has increased during the past decade,
especially due to consumers’ concerns on animal welfare and
the environment and because of health and social status
considerations, among other reasons.1,2 However, the organic
production system is more expensive than the conventional
system, and therefore, organic products tend to retail at a
higher price, which makes them susceptible to fraud. In the
European Union, regulations related to organic animal products
require that the animals are fed with organic feed (that is to say
that at least 95% of its dry matter should come from ingredients
of organic farming).3

Administrative controls and inspections are currently
conducted to certify organic products and avoid frauds. The
authenticity of organic feed needs to be verified to avoid
intentional or accidental mislabeling, because fraud at this level
of the food chain would affect the authenticity of all the
products derived from these animals. Having an analytical tool
to verify the organic identity of food and feed products would
protect genuine organic food and feed producers, would
reassure consumers, and would help the regulatory and
inspection bodies.2 Because of this, some tools have recently
been developed to authenticate several organic food
products.4−7 Feed fatty acid fingerprinting has been successfully
used to verify the organic identity of feed used for laying hens.7

However, this determination is based on a multistep procedure
(grinding of feed, fat extraction, derivatization, and gas
chromatographic separation) which requires the use of

chemicals and trained personnel and is relatively time-
consuming.
The ultimate approach in organic product verification would

be the development of methods based on rapid techniques that
could be applied even during inspections on site. NIRS is a
nondestructive, easily applicable, and fast technique that
requires minimal or no sample preparation and permits the
measurement of several components at once. By recording the
response of certain molecular bonds (such as O−H, N−H, or
C−H) to NIR radiation, NIR spectroscopy generates a
spectrum that may be characteristic of a sample and may be
considered its “fingerprint”.8 On the basis of previous results on
the authentication of organic feed by fatty acid fingerprinting7

and with regard to the particular advantages of NIR
spectroscopy, NIRS might be a promising technique to
authenticate organic feed. Indeed, NIRS is already being used
in the feed sector to determine feed composition and its
nutritive value, digestibility, and traceability.9,10 It can even be
implemented at the feed mill plant level.11,12 Although
extensive literature exists on the application of NIR spectros-
copy to both qualitative and quantitative analysis of feed,13−15

there are currently no studies on the authentication of the
organic identity of feed by NIRS.
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The aim of this research was therefore to evaluate NIR
spectroscopy for the authentication of organic feed used for
laying hens in The Netherlands as a rapid alternative to the
fatty acid fingerprinting approach.

■ MATERIALS AND METHODS
Study Design. A total of 96 feed samples used for laying hens were

collected during 2009 and 2010 from farms in The Netherlands. The
set of samples consisted of 36 organic feed samples and 60
conventional feed samples (from 24 free-range farms, 24 barn farms,
and 12 cage farms). The sampling was conducted in the framework of
a larger project in which also methodology for authentication of
organic eggs was developed.5,6 The feed samples were collected from
the same farms as used for the organic egg study, and they therefore
represent feed that was used in practice in laying hen farms in The
Netherlands in 2009 and 2010. Farms were selected with the help of
the Dutch product board for poultry and eggs (CPE) and the Dutch
organic produce certification body SKAL. The selection was balanced
with regard to location (north, east, south, west) and farm size per
production system (organic and conventional). The three farm size
groups in each production system were defined taking into account the
particular farm populations, as usually organic farms are smaller sized
than conventional farms. Organic farm size groups consisted of farms
with <5000, 5000−10000, and 10000−20000 hens; the conventional
groups consisted of the categories 10000−20000, 20000−50000, and
>50000 hens.5 The feed samples were stored in the dark until analysis.
Before being analyzed, they were ground to 0.5 mm particle size by
using a ZM200 Retsch ultracentrifuge mill (Retsch Benelux, Nijkerk,
The Netherlands).
Near-Infrared Spectroscopy of Feeds. NIR measurements were

performed using a FOSS NIR 6500 SY-I system equipped with a
spinning module, working in reflectance mode, in the spectral range of
1100−2498 nm, taking readings every 2 nm (FOSS NIRSystems, Inc.,
Laurel, MD). Measurements were taken using standard ring cups
(diameter of 3.75 cm).
Statistical Analysis and Modeling. Principal component analysis

(PCA) was performed with the 96 samples to screen the multivariate
data for outliers and to explore the presence of any natural clustering
in the data. PCA performs a reduction in the data dimensionality to
facilitate the visualization of the multivariate data, retaining as much as
possible the information present in the original data.16

Then partial least squares discriminant analysis (PLS-DA) was used
to develop a classification model for organic feed vs conventional feed.
PLS-DA is a supervised classification technique that is often used for
highly dimensional data, especially when the amount of variables
greatly exceeds the number of samples. It performs a variable
reduction on the data set by calculating new variables (called latent
components or factors) by combining the variables in the data set to
find the maximum correlation between them and the class variable
and, thus, the maximum separation among two classes (organic vs
conventional). Then linear discriminant analysis is applied on the
reduced variable set (the latent components) to provide the final
classification model.
Since data preprocessing can have a profound effect on the model

results, several methods of data preprocessing were evaluated: none
(raw data), autoscaling (scaling to unit variance), first and second
derivatives (gap 5), standard normal variate (SNV),17 and direct
orthogonal signal correction (DOSC).18,19 In DOSC, the spectral
information that is certainly not related to the response variable (or
class membership in this case) is largely ignored. The optimal PLS-DA
model was then determined using a stratified random resampling
approach including internal and external model validation. It consists
of the following steps:

(i) Randomly select 70% of the data set representative with respect
to class membership and perform data preprocessing (training
subset).

(ii) For each preprocessed training subset, find the optimal number
of PLS components using the routine of Boulesteix,20 a

maximum of 8 components and 50 iterations, leaving 30% of
the training set out as a pseudo test set.

(iii) Internally validate each preprocessed data subset using the
optimal number of components as determined in step ii and
calculate the sensitivity (i.e., number of organic feed samples
correctly identified as organic divided by all organic feed
samples included in the subset) and the specificity (i.e., number
of conventional feed samples correctly identified as conven-
tional divided by all conventional feed samples included in the
subset).

(iv) Calculate the sensitivity and the specificity of for each data
preprocessed subset using the remaining 30% of the data as an
external validation subset. For autoscaling and DOSC, the
parameters for preprocessing of the test set were based on the
parameters as derived for the training set.

To study the robustness of these models, these four steps were
repeated 1000 times. Thus, 1000 data subsets were created, and each
of them was submitted to the five data preprocessing techniques. Then
each of the 5000 models was internally and externally validated. The
suitability of the preprocessing techniques applied was assessed by
considering the median sensitivity and specificity during the external
validation of the 1000 models conducted with each data preprocessing
method.

To identify which variables (wavelengths) contributed most to the
classification model, a variable selection approach20 was followed. The
procedure consisted of a random selection of 70% of the samples
representative of the class membership. The variables were then
ordered from the most to the least important with respect to the
classification into organic and nonorganic feed according to the
absolute value of the weight defining the first PLS latent component
(“variable.selection” routine in the R package “pls.genomics”).20 A
weight value was calculated for each variable by dividing 1 by the rank
number. These three steps were repeated 1000 times, and the summed
weight for each variable (wavelength) was calculated (and divided by
1000).

All calculations were performed in R version 2.12.2 (www.R-project.
org)21 using built-in functions and the package “pls.genomics” for
various PLS-DA algorithms. For DOSC,19 the Matlab code provided
by the Biosystems Data Analysis Group of the University of
Amsterdam (http://www.bdagroup.nl/) was rewritten to R code.

■ RESULTS AND DISCUSSION

Exploring NIR Data: PCA. As can been seen in Figure 1,
the major features of the raw NIR spectra are quite similar for
both organic and conventional feed. Mathematical treatment of
the NIR spectra and chemometrics is usually required to exploit
the information underlying these spectra and to reveal subtle
differences that might exist between different types of samples
that might not be directly evident.22 PCA was conducted with
the NIR spectral data (1100−2498 nm) of the whole sample set
(96 samples) to reveal natural clustering of the samples and to
detect outliers. Figure 1 shows a high variability among the
absorbance values of different samples that might be due to
some effects such as scattering. Therefore, preprocessing of raw
data was necessary. Several data preprocessing methods were
tried to reveal any natural clustering in the sample set and the
presence of outliers. In the raw spectra, it is apparent that two
samples seem to be quite different from the bulk of the data
showing an increased baseline (Figure 1) at shorter wave-
lengths. Since the PCA scores plot (Figure 2) did not reveal
any clear abnormalities from any of the preprocessing
techniques applied in this study, there was no reason to
exclude these samples for further modeling. While no
differences between organic and conventional feed samples
were evident in the raw data, the PCA scores plot of the
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preprocessed data revealed a certain tendency of both feed
types to cluster in two partly overlapping clusters (Figure 2).
Classification Model: Organic vs Conventional Feed.

According to the European regulations, it is possible to use the
same feed for the production of the three conventional egg
categories (cage, barn, and free range).3 Furthermore, in the
PCA, the conventional feeds used for the production of free
range, barn, and cage eggs did not show any tendency to cluster
separately from each other (data not shown). Therefore, all
conventional feeds were considered within one category for the
development of a binary classification model (organic vs
conventional feed).

Binary classification models (organic vs conventional feed)
were developed using PLS-DA. The general aim of these
classification models is to use them to predict the (organic)
identity of new unknown or suspicious feed samples. To obtain
reliable results in the future, it is highly important to validate
the models and to verify their robustness. Following the
approach described in the section “Statistical Analysis and
Modeling”, the median sensitivity and specificity was
determined for both internal and external validation using
various data preprocessing techniques. As shown in Table 1, the

model developed after the application of DOSC provided the
highest sensitivity and specificity (median value 1.0) during
internal validation. Models based on the first and second
derivatives also reached a very high sensitivity (1.0) and
specificity (0.98) during internal validation. SNV also
performed quite well, but provided a slightly lower sensitivity.
The number of PLS-DA latent components of each model

was optimized by evaluating the percentage of correct
classifications (sensitivity and specificity) obtained during
their internal validation. Of all the preprocessing techniques
applied, the DOSC models required the lowest number of
components (Table 1). Actually, DOSC was designed to reduce
the effect of the spectral information not related to the class
membership, which explains the small number of PLS-DA
latent components required in the classification models.18,19

Once optimized, each of the 1000 models (for each
preprocessing technique) was used to predict the identity of
the 30% samples that had been excluded in the first step of the
procedure (external validation). Median values of sensitivity
and specificity decreased in comparison to the values found
during internal validation, but they were still quite high,
especially for the DOSC, SNV, and first and second derivative
models (Table 1). The median sensitivity was slightly lower
than the specificity, showing a wider range. The minimum
sensitivity was close to 0.5 for all preprocessing techniques;

Figure 1. NIR spectra of organic and conventional feed.

Figure 2. PCA scores plot of the NIR data (second derivative).
Variance explained by each factor is provided in parentheses.

Table 1. Median Sensitivity and Specificity of PLS-DA
Models during Internal and External Validation and the
Median Optimal Number of PLS-DA Factorsa Established
from 1000 Realizations of the PLS-DA Model Using Several
Methods of Data Preprocessingb

Internal Validation

preprocessing
method sensitivity specificity

no. of
factors

none (raw data) 0.88 (0.72−1.00) 0.98 (0.88−1.00) 8 (2−8)
autoscaling 0.88 (0.76−1.00) 0.98 (0.88−1.00) 8 (6−8)
first derivativec 1.00 (0.80−1.00) 0.98 (0.95−1.00) 8 (4−8)
second derivativec 1.00 (0.88−1.00) 0.98 (0.93−1.00) 8 (5−8)
SNV 0.92 (0.80−1.00) 0.98 (0.95−1.00) 8 (7−8)
DOSC (one
component)

1.00 (0.92−1.00) 1.00 (0.98−1.00) 2 (2−8)

External Validation

preprocessing method sensitivity specificity

none (raw data) 0.82 (0.27−1.00) 0.89 (0.50−1.00)
autoscaling 0.82 (0.45−1.00) 0.94 (0.50−1.00)
first derivativec 0.91 (0.45−1.00) 0.94 (0.72−1.00)
second derivativec 0.91 (0.55−1.00) 0.94 (0.72−1.00)
SNV 0.91 (0.45−1.00) 1.00 (0.72−1.00)
DOSC (one component) 0.91 (0.55−1.00) 0.94 (0.56−1.00)

aThe maximum number of factors is 8. bMinimum and maximum
values are provided in parentheses. cGap 5.
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however, these low values (<0.6) were only reached by a few
data subsets (less than five) for the DOSC, SNV, and first and
second derivative models (see box-plot graphics in the
Supporting Information). Specificity values varied in narrower
ranges for SNV- and first and second derivative-based models
than for DOSC-based models (Table 1). Overall, these external
validation results are quite successful, especially for DOSC,
SNV, and first and second derivative models. Therefore,
unknown organic feed samples would be, in most cases,
correctly identified by applying NIR spectroscopy and PLS-DA
classification.
Wavelength Contribution to the NIR Classification

Model. The variables (wavelengths) that most contributed to
the PLS-DA classification model were investigated according to
an approach based on Boulesteix.20 Figure 3 shows the

importance of each variable (wavelength) for the PLS-DA
classification model based on the first derivative data. The
regions with the highest importance correspond to the maxima
and minima of the spectra after the first derivative is taken.
The region located around 1460−1590 nm has been

attributed to the N−H stretch and has been used to estimate
the crude protein content.23,24 Also some wavelengths in the
2020−2124 nm region have been used to predict the crude
protein content in cereals.24 Both regions are shown to be
among the most important for the classification model (Figure
3). This could indicate that the protein content and/or
composition might differ between organic and conventional
feeds. Differences in the ingredients selected to formulate
organic and conventional feeds might explain these protein
differences.
Water content has been related to the 1450 and 1930 nm

wavelengths.12,14 However, both regions did not contribute to a
great extent to the classification model, indicating that water
content might not be important to discriminate organic and
conventional feeds.
Wavelengths located within the 1150−1170 region and

around 1218 nm have been related to CH3− and −CH2−
groups of fatty acids since this region corresponds to the
second overtone of the C−H stretching vibration.22,25 Indeed,
fats with different unsaturation degrees have been discriminated
using some wavelengths in this region.25 Other important
spectral regions for the classification into organic and

conventional feeds have also been related to the fat content
and fat composition of several food products. For instance, the
2100−2200 nm region or the 2230−2400 nm region has been
related to differences in the unsaturation degree of oils and
other products.8,23,25,26 These regions showed several wave-
lengths recognized as important for the classification model
(Figure 3). Also, the region 1350−1430 nm, attributed to the
C−H combination,8,25 has been attributed to the spectra of fats
and oils. Overall, this indicates that organic and conventional
feeds might present differences in the unsaturation degree of
their lipid fraction. This is according to previous results where
the fatty acid composition of feeds was used to verify the
organic identity of these feeds.7 Moreover, the study7 showed
that some polyunsaturated (C18:2n−6, C18:3n−3) and
monounsaturated (C16:1n−9) fatty acids had a high
contribution to the classification model.

NIR Model vs Fatty Acid Fingerprinting Model. In a
previous part of this study, using the same set of samples as
those used here, it was shown that it is also possible to verify
the identity of organic feed by means of fatty acid finger-
printing.7 Indeed, better sensitivity values (1.0) were reached
than with the NIRS-based method. However, to obtain the feed
fatty acid fingerprint, the analytical procedure requires the
extraction of the fat from feed, the derivatization of its fatty
acids into fatty acid methyl esters, and its determination by gas
chromatography. This implies that the feed fatty acid
fingerprinting approach is a relatively time-consuming method
that does not allow an immediate answer on the real identity of
samples and requires the use of chemicals, expensive equip-
ment, and trained personnel. NIR spectroscopy is a more rapid,
cost-effective method that does not require the use of highly
qualified personnel, might even be applied in situ, and allows a
massive number of analyses of samples per day. Both
authentication models could be applied to verify the organic
identity of unknown or suspicious organic feed samples used
for laying hens, being complementary to the administrative
controls and inspections usually conducted in the organic food
sector. Due to the above-described practical aspects, together
with the higher sensitivity of the fatty acid fingerprint model,
the NIRS-based method would be more suitable as a rapid
screening tool. The fatty acid fingerprinting method would then
provide further confirmation in the case of any suspected feed
sample labeled as organic. The fatty acid fingerprinting method
would be required only for those feed samples labeled as
organic, but identified as conventional by the NIRS model. The
feed fatty acid fingerprint model would then further show if the
feed sample is truly organic (thus, it would have been a false
negative in the NIRS method) or conventional (detection of a
fraud).
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Guerrero, J. E.; Peŕez-Marín, D.; Garrido-Varo, A. Reducing NIR
prediction errors with nonlinear methods and large populations of
intact compound feedstuffs. Meat Sci. Technol. 2008, 19,
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